Jump to content

Search the Community

Showing results for tags 'executable'.

  • Search By Tags

    Type tags separated by commas.
  • Search By Author

Content Type


Forums

  • Informatii generale
    • Anunturi importante
    • Bine ai venit
    • Proiecte RST
  • Sectiunea tehnica
    • Exploituri
    • Challenges (CTF)
    • Bug Bounty
    • Programare
    • Securitate web
    • Reverse engineering & exploit development
    • Mobile security
    • Sisteme de operare si discutii hardware
    • Electronica
    • Wireless Pentesting
    • Black SEO & monetizare
  • Tutoriale
    • Tutoriale in romana
    • Tutoriale in engleza
    • Tutoriale video
  • Programe
    • Programe hacking
    • Programe securitate
    • Programe utile
    • Free stuff
  • Discutii generale
    • RST Market
    • Off-topic
    • Discutii incepatori
    • Stiri securitate
    • Linkuri
    • Cosul de gunoi
  • Club Test's Topics
  • Clubul saraciei absolute's Topics
  • Chernobyl Hackers's Topics
  • Programming & Fun's Jokes / Funny pictures (programming related!)
  • Programming & Fun's Programming
  • Programming & Fun's Programming challenges
  • Bani pă net's Topics
  • Cumparaturi online's Topics
  • Web Development's Forum
  • 3D Print's Topics

Find results in...

Find results that contain...


Date Created

  • Start

    End


Last Updated

  • Start

    End


Filter by number of...

Joined

  • Start

    End


Group


Website URL


Yahoo


Jabber


Skype


Location


Interests


Biography


Location


Interests


Occupation

Found 4 results

  1. Before we start it's probably best to explain some things: Signature - A pattern of bytes used by an antivirus to identify malicious executables, this could be a string, parts of a function, or a hash. Crypting - This is the most common way of evading antivirus detections, it works by encrypting the malicious executable so the antivirus cannot match the malicious code to existing signatures. Payload - The malicious executable which is encrypted to evade detections, this is attached to the stub in some way (stored as a resource, added after then end of file, appended to a new or existing section). Stub - A simple program responsible for decrypting the payload and executing it in memory. Due to the payload being encrypted, antiviruses will attempt to generate signatures to match the stub's code, but because the stub is small and simple it can be easily modified to evade existing signatures. Polymorphism Polymorphism is a solution to a problem mainly found with worms/botnet: When an AV adds a new signature that detects the malicious executable, the infected file will be quarantined, leaving the malware running in memory until reboot. If a botmaster is running a botnet with thousands of bots, each time the stub is detected he's likely to lose a few hundred bots, his only choice: To keep updating the bots with a new stub before the previous one is detected (which for large botnets can be every few hours), leaving the hacker with very little free time. A solution to this would be to write malware capable of programmatically generating a unique stub and replacing the old one on execution, resulting in each computer having a different stub; this is know as polymorphism. there's a few ways to programmatically create unique code that performs the same function as the previous. Block Mutation A lot of assembly instructions can be freely movable, whilst some cannot. An instruction using a relative address (such as a jump or call), when moved will point to a different location, breaking the code; freely movable instructions such as those using absolute addresses or only registers can be moved anywhere. Block based polymoprphism works by breaking the code down into small blocks, which are then numbered; the number specifies the order in which they execute and the block is either marked as movable or immovable based on its containing instruction. The mutation engine can then reorder, relocate, or separate the movable block; using jumps or similar instructions to link them together so that they execute in the correct order. Junk code (random instructions which are never actually executed) can also be added between blocks to add more entropy and change the executable size. Register Swapping It's possible to write the code in such a way that registers can easily be switched out, for instance all occurrences of edx within a function could be replaced with ecx, changing a lot of bytes within the application. The only problem with this approach is there's only a few usable registers, making it easy to exhaust all possible combinations, and it's still possible to generate signatures based on the layout of the instructions. Internal Assembler + Intermediate Language A very effective approach is to embed an assembler within the payload, as well as create an intermediate language (IL) which the polymorphic engine uses to create ASM on the fly. A simple example would be the following IL code. pmov Reg1, 5 add eax, Reg1 In this example instructions prefixed with p will be mutated at an instruction level, whilst those without a prefix will just be assigned a register and compiled as ASM. The IL engine would then use a seed to randomly generate the p-prefixed instructions by picking an instruction, or group of instructions, to perform the operation, as well as assign a register to Reg1 and Reg2. The array of instructions to handle pmov would look something like this: push val pop reg mov reg, val xor reg, reg add reg, val Once the engine has picked which instruction it wishes to use, it would then fill in the register and value, then compile it to ASM. Here are some examples of final outputs. push 5 pop edx add eax, edx mov ecx, 5 add eax, ecx xor ebx, ebx add ebx, 5 add eax, ebx By using an IL, we avoid having to first disassemble the stub code before mutating it. Metamorphism Today advanced metamorphic malware which can efficiently evade signature detection is nearly impossible, but back in the days of DOS / 95 / 98 viruses, it has been achieved multiple times. The idea of metamorphism is to take polymorphism a step further and instead of encrypting the malicious executable and mutating the stub, the entire malicious executable is mutated, including the code required to perform the mutation. Malware that is required to create a new, unique copy of itself on every propagation is also required to disassemble previously mutated code and regulate size (because instructions can be mutated into multiple instructions, it's important to be able to do the opposite or the executable grows almost exponentially with every mutation). Due to the amount of consideration and effort that would have to go into creating modern metamorphic malware, most programmers opt to use polymorphism instead, as this allows them to generate output from a temporary representation. A simple mistake during disassembling could result in the executable ceasing to work, and it's a lot harder to debug and test metamorphism in large applications. Source
  2. Researchers have peeled back more layers on Vawtrak, a relatively new banking Trojan so complex that those who have taken it apart have likened it to a Matryoshka, or Russian nesting doll. Virus Bulletin published a deep dive on the malware penned by Raul Alvarez, a researcher with Fortinet, yesterday. Like a set of dominos, the malware involves a series of steps where each one triggers the next. In this case, the first executable binary triggers the second binary, but before doing so, it needs to decode it by calling a trio of APIs and decrypting a large block of data. “Vawtrak’s overlay area holds an encrypted copy of the executable binary that is used in the next layer. It is to be transferred and decrypted into the malware’s virtual memory space,” Alvarez writes. After calling another API, the malware also drops an image file, “Diana-23.jpg,” to con users into thinking that’s the only thing the executable does. After a series of modules are parsed and even more APIs are called upon the second layer of the malware, the .exe mainOUT-crypted-5, is decrypted and decompressed. By this point, following decompression, the malware has produced what Alvarez refers to as the “third doll” of the malware, an executable binary that’s the simplest of the four layers. Decrypting the large data block This part of Vawtrak has no protection at all, meaning no decryption or hashing is used. The third shell of the malware removes software restrictions and tries to restrict any permissions associated with any antimalware apps looking for it. Lastly, the fourth doll in this analogy, if everything has gone according to plan, decrypts data and produces a heap that contains an executable binary, a .DLL disguised as a .DAT file, with a random file name. Once deployed, the malware uses two more APIs, the RegCreateKeyA and RegSetValueExW to ensure the malware sticks around following a restart. While the malware which was first written about late last year was first thought to be targeting banks in Japan, Alvarez claims it’s “recently broadened its geographic scope” and has become more sophisticated over the last several months. “The ingenuity and skills shown by Vawtrak are not simple, but concise,” Alvarez writes in closing. In September researchers learned that Vawtrak, which was masquerading as Neverquest at the time, had evolved to target social media, retailers and game portals. Recent configurations allowed the malware to sniff out banking sessions, modify data in web traffic, break encryption and steal log-in credentials and other sensitive information. Source
  3. PeStudio is a unique tool that performs the static analysis of 32-bit and 64-bit Windows executable. Malicious executable attempts to hide its malicious intents and to evade detection. In doing so, it generally presents anomalies and suspicious patterns. The goal of PeStudio is to detect these anomalies, provide indicators and score the executable being analyzed. Since the executable file being analyzed is never started, you can inspect any unknown or malicious executable with no risk. Download: http://www.winitor.com/tools/PeStudio846.zip
  4. PEStudio is a unique tool that performs the static investigation of 32-bit and 64-bit executable. PEStudio is free for private non-commercial use only. Malicious executable often attempts to hide its malicious behavior and to evade detection. In doing so, it generally presents anomalies and suspicious patterns. The goal of PEStudio is to detect these anomalies, provide Indicators and score the Trust for the executable being analyzed. Since the executable file being analyzed is never started, you can inspect any unknown or malicious executable with no risk. Download: Index of /tools
×
×
  • Create New...