Search the Community
Showing results for tags 'var_check'.
-
Keygenning is a process of finding a valid key for a program. It is used for cracking/piracy. Most of the cracking has been documented on x86, there haven’t been many articles on x64 cracking. In this article, we will show you how to keygen a Linux x64 bit application on a Linux computer. For purpose we will use 1: Linux machine ( 64bit mint box) 2: EDB debugger 3: IDA Disassembler 4: Compiler to write a key generator 5: Fill out the form below for the files associated with this article Let’s run file command to check the type of file. file r5 r5: ELF 64-bit LSB executable, x86-64, version 1 (SYSV), dynamically linked (uses shared libs), for GNU/Linux 2.6.24, BuildID[sha1]=86bf854ce620288567d153883d4609163485d34d, not stripped From the output, we see the build version, and it is a dynamically linked file. ~/Desktop $ nm r5 0000000000601109 B __bss_start 00000000006010e0 D buf 000000000040069d T check_password 0000000000601109 b completed.6972 0000000000601060 D __data_start 0000000000601060 W data_start 00000000006010a0 D delta 00000000004005e0 t deregister_tm_clones 0000000000400650 t __do_global_dtors_aux 0000000000600e18 t __do_global_dtors_aux_fini_array_entry 0000000000601068 D __dso_handle 0000000000600e28 d _DYNAMIC 0000000000601109 D _edata 0000000000601110 B _end 0000000000400894 T _fini 0000000000400670 t frame_dummy 0000000000600e10 t __frame_dummy_init_array_entry 0000000000400a80 r __FRAME_END__ 0000000000601000 d _GLOBAL_OFFSET_TABLE_ w __gmon_start__ 0000000000400500 T _init 0000000000600e18 t __init_array_end 0000000000600e10 t __init_array_start 00000000004008a0 R _IO_stdin_used w _ITM_deregisterTMCloneTable w _ITM_registerTMCloneTable 0000000000600e20 d __JCR_END__ 0000000000600e20 d __JCR_LIST__ w _Jv_RegisterClasses 0000000000400890 T __libc_csu_fini 0000000000400820 T __libc_csu_init U __libc_start_main@@GLIBC_2.2.5 00000000004007b6 T main 0000000000601080 D master U printf@@GLIBC_2.2.5 U puts@@GLIBC_2.2.5 U random@@GLIBC_2.2.5 0000000000400610 t register_tm_clones 00000000004005b0 T _start U strcmp@@GLIBC_2.2.5 U strcpy@@GLIBC_2.2.5 U strlen@@GLIBC_2.2.5 0000000000601110 D __TMC_END__ x64 assembly basics x64 consists of extended register set and some extra instructions are added as well. Following is the list of added registers in x64 r8, r9 , r10, r11, r12, r13, r14, r15 Lower 32 bits of r8 can be accessed by r8d, lower 16 bits can be accessed by r8w and lower 8 bits can be accessed by rb8 and more over RIP (instruction pointer) can be directly accessed. All the register in x64 are 64bit in sizes . RIP is also 64bit but Current implementations only support 48 bit linear addresses. In addition to normal registers it also added SSE registers namely from xmm8 – xmm15 If any data movement operation is performed on EAX, it zero extends the higher 32 bits of RAX register. Some added instructions are lodsq, stosq etc. For the purpose of debugging, we will use an x64 debugger known as EDB on Linux. This debugger is similar to ollydbg (windows) and is quite easy to use .Following is the default pane of EDB Argument passing in x64 is quite different from x86 itself Arguments are passed in registers RDI, RSI, RDX, RCX, r8 and r9 rest of the parameters are passed on the stack Navigation is simple just like ollydbg Running our crackme file just like that gives us the following output /Desktop $ ./r5 Usage: ./r5 password Maybe plaintext isn’t good after all. Which gives us a hint that it requires a password, which we have to figure out Opening it in a disassembler gives us an idea of what is happening around. Apparently it is looking for a parameter and is passing it to a function Clearly you can see that it passing argv[1] as a parameter to function check_password() The first hint is about the length of the input string, which should be equal to the length of “this_is_not_even_interesting_its_garbage” .data:00000000006010E0 ; char buf[] .data:00000000006010E0 buf db 'this_is_not_even_interesting_its_garbage',0 .data:00000000006010E0 ; DATA XREF: check_password+1C#o .data:00000000006010E0 ; check_password+3C#o ... .data:00000000006010E0 _data ends .data:00000000006010E0 .bss:0000000000601109 ; =========================================================================== and is checked here call _strlen ; Call Procedure mov rbx, rax mov edi, offset buf ; “this_is_not_even_interesting_its_garbag”… call _strlen ; Call Procedure cmp rbx, rax ; Compare Two Operands jz short Go ; Jump if Zero (ZF=1) After that, this string is replaced by our own input string mov rax, [rbp+passcode] mov rsi, rax ; src mov edi, offset buf ; "this_is_not_even_interesting_its_garbag"... call _strcpy ; Call Procedure mov [rbp+VarCheck], 1 jmp loc_400791 ; Jump After this operation program goes in a loop and loop body is skipped if value at index of variable delta is zero movzx eax, delta[rax] ; If not, it performs some mathematical operations on the input strings leveraging on delta and other parameters which can be represented in C language as x = (random() % delta[index] ) + 1; delta[index] = delta[index] - x; var_check = var_check ^ (unsigned int )delta[index] ; random() call is not initialized with srand() so it can be predicted easily. Finally, after the 40 rounds of loop, the mutated string is compared against “this_aint_that_simple_but_good_luck_haha” and if it is equal, “password OK” message is printed Now to calculate that string we can perform the exact opposite on this string to get out key We can use the following C program to do so. #include <stdio.h> unsigned char delta[] = { 3, 253, 3, 249, 0, 3, 6, 0, 241, 0, 250, 7, 22, 235, 8, 252, 246, 2, 254, 243, 4, 19, 1, 234, 237, 15, 253, 240, 242, 15, 12, 243, 241, 12, 7, 0, 5, 14, 10, 4, }; unsigned char buff [48] ; int main(int argc, char **argv) { int index = 0; int var_check = 1; unsigned char x = '\x00'; strcpy(buff, "this_aint_that_simple_but_good_luck_haha"); while ( var_check ) { index = 0; var_check = 0; while ( index < 40) { if (delta[index]) { x = (random() % delta[index] ) + 1; delta[index] = delta[index] - x; var_check = var_check ^ (unsigned int )delta[index] ; buff[index] = buff[index] + x; } // if zero index++; } } printf("%s\n", buff); } Compiling and running this program gives us the following output: “well_done_now_go_on_irc_and_ask_for_more” ~/Desktop $ ./r5 “well_done_now_go_on_irc_and_ask_for_more” password OK Source
-
- call
- delta[index]
-
(and 3 more)
Tagged with: