Jump to content

Search the Community

Showing results for tags 'instruction'.

  • Search By Tags

    Type tags separated by commas.
  • Search By Author

Content Type


Forums

  • Informatii generale
    • Anunturi importante
    • Bine ai venit
    • Proiecte RST
  • Sectiunea tehnica
    • Exploituri
    • Challenges (CTF)
    • Bug Bounty
    • Programare
    • Securitate web
    • Reverse engineering & exploit development
    • Mobile security
    • Sisteme de operare si discutii hardware
    • Electronica
    • Wireless Pentesting
    • Black SEO & monetizare
  • Tutoriale
    • Tutoriale in romana
    • Tutoriale in engleza
    • Tutoriale video
  • Programe
    • Programe hacking
    • Programe securitate
    • Programe utile
    • Free stuff
  • Discutii generale
    • RST Market
    • Off-topic
    • Discutii incepatori
    • Stiri securitate
    • Linkuri
    • Cosul de gunoi
  • Club Test's Topics
  • Clubul saraciei absolute's Topics
  • Chernobyl Hackers's Topics
  • Programming & Fun's Jokes / Funny pictures (programming related!)
  • Programming & Fun's Programming
  • Programming & Fun's Programming challenges
  • Bani pă net's Topics
  • Cumparaturi online's Topics
  • Web Development's Forum
  • 3D Print's Topics

Find results in...

Find results that contain...


Date Created

  • Start

    End


Last Updated

  • Start

    End


Filter by number of...

Joined

  • Start

    End


Group


Website URL


Yahoo


Jabber


Skype


Location


Interests


Biography


Location


Interests


Occupation

Found 2 results

  1. In the previous article, we learned about the basics of the Stack Based Buffer Overflow, such as analyzing the stack, creating breakpoints and analyzing the function call and registers. With the help of these skills, we will now see how we can manipulate the return addresses dynamically into the program. We will analyze a program in which a function ‘do_not_call’ is defined but has never been called throughout the program. So, our goal is to change the register address in a way so that this function is called and performs the operation which is given in the function. We will perform this task
  2. This is a proof-of-concept exploit that is able to escape from Native Client's x86-64 sandbox on machines that are susceptible to the DRAM "rowhammer" problem. It works by inducing a bit flip in read-only code so that the code is no longer safe, producing instruction sequences that wouldn't pass NaCl's x86-64 validator. Note that this uses the CLFLUSH instruction, so it doesn't work in newer versions of NaCl where this instruction is disallowed by the validator. Download
×
×
  • Create New...