Nytro Posted November 26, 2016 Report Posted November 26, 2016 Cryptology ePrint Archive: Report 2016/1114 Full Disk Encryption: Bridging Theory and Practice Louiza Khati and Nicky Mouha and Damien Vergnaud Abstract: We revisit the problem of Full Disk Encryption (FDE), which refers to the encryption of each sector of a disk volume. In the context of FDE, it is assumed that there is no space to store additional data, such as an IV (Initialization Vector) or a MAC (Message Authentication Code) value. We formally define the security notions in this model against chosen-plaintext and chosen-ciphertext attacks. Then, we classify various FDE modes of operation according to their security in this setting, in the presence of various restrictions on the queries of the adversary. We will find that our approach leads to new insights for both theory and practice. Moreover, we introduce the notion of a diversifier, which does not require additional storage, but allows the plaintext of a particular sector to be encrypted to different ciphertexts. We show how a 2-bit diversifier can be implemented in the EagleTree simulator for solid state drives (SSDs), while decreasing the total number of Input/Output Operations Per Second (IOPS) by only 4%. Category / Keywords: secret-key cryptography / disk encryption theory, full disk encryption, FDE, XTS, IEEE P1619, unique first block, diversifier, provable security Original Publication (with major differences): CT-RSA 2017 - RSA Conference Cryptographers' Track Date: received 25 Nov 2016 Contact author: nicky at mouha be Available format(s): PDF | BibTeX Citation Version: 20161125:195305 (All versions of this report) Short URL: ia.cr/2016/1114 Discussion forum: Show discussion | Start new discussion Sursa: https://eprint.iacr.org/2016/1114 Quote