Nytro Posted April 2, 2018 Report Posted April 2, 2018 Executing Commands and Bypassing AppLocker with PowerShell Diagnostic Scripts JANUARY 7, 2018 ~ BOHOPS Introduction Last week, I was hunting around the Windows Operating System for interesting scripts and binaries that may be useful for future penetration tests and Red Team engagements. With increased client-side security, awareness, and monitoring (e.g. AppLocker, Device Guard, AMSI, Powershell ScriptBlock Logging, PowerShell Constraint Language Mode, User Mode Code Integrity, HIDS/anti-virus, the SOC, etc.), looking for ways to deceive, evade, and/or bypass security solutions have become a significant component of the ethical hacker’s playbook. While hunting, I came across an interesting directory structure that contained diagnostic scripts located at the following ‘parent’ path: %systemroot%\diagnostics\system\ In particular, two subdirectories (\AERO) and (\Audio) contained two very interesting, signed PowerShell Scripts: CL_Invocation.ps1 CL_LoadAssembly.ps1 CL_Invocation.ps1 provides a function (SyncInvoke) to execute binaries through System.Diagnostics.Process. and CL_LoadAssembly.ps1 provides two functions (LoadAssemblyFromNS and LoadAssemblyFromPath) for loading .NET/C# assemblies (DLLs/EXEs). Analysis of CL_Invocation.ps1 While investigating this script, it was quite apparent that executing commands would be very easy, as demonstrated in the following screenshot: Importing the module and using SyncInvoke is pretty straight forward, and command execution is successfully achieved through: . CL_Invocation.ps1 (or import-module CL_Invocation.ps1) SyncInvoke <command> <arg...> However, further research indicated that this technique did not bypass any protections with subsequent testing efforts. PowerShell Contrained Language Mode (in PSv5) prevented the execution of certain PowerShell code/scripts and Default AppLocker policies prevented the execution of unsigned binaries under the context of an unprivileged account. Still, CL_Invocation.ps1 may have merit within trusted execution chains and evading defender analysis when combined with other techniques. **Big thanks to @Oddvarmoe and @xenosCR for their help and analysis of CL_Invocation Analysis of CL_LoadAssembly.ps1 While investigating CL_LoadAssembly, I found a very interesting write-up (Applocker Bypass-Assembly Load) by @netbiosX that describes research conducted by Casey Smith (@subTee) during a presentation at SchmooCon 2015. He successfully discovered an AppLocker bypass through the use of loading assemblies within PowerShell by URL, file location, and byte code. Additionally, @subTee alluded to a bypass technique with CL_LoadAssembly in a Tweet posted a few years ago: In order to test this method, I compiled a very basic program (assembly) in C# (Target Framework: .NET 2.0) that I called funrun.exe, which runs calc.exe via proc.start() if (successfully) executed: Using a Windows 2016 machine with Default AppLocker rules under an unprivileged user context, the user attempted to execute funrun.exe directly. When called on the cmd line and PowerShell (v5), this was prevented by policy as shown in the following screenshot: Funrun.exe was also prevented by policy when ran under PowerShell version 2: Using CL_LoadAssembly, the user successfully loads the assembly with a path traversal call to funrun.exe. However, Constrained Language mode prevented the user from calling the method in PowerShell (v5) as indicated in the following screenshot: To bypass Constrained Language mode, the user invokes PowerShell v2 and successfully loads the assembly with a path traversal call to funrun.exe: The user calls the funrun assembly method and spawns calc.exe: Success! As an unprivileged user, we proved that we could bypass Constrained Language mode by invoking PowerShell version 2 (Note: this must be enabled) and bypassed AppLocker by loading an assembly through CL_LoadAssembly.ps1. For completeness, here is the CL sequence: powershell -v 2 -ep bypass cd C:\windows\diagnostics\system\AERO import-module .\CL_LoadAssembly.ps1 LoadAssemblyFromPath ..\..\..\..\temp\funrun.exe [funrun.hashtag]::winning() AppLocker Bypass Resources For more information about AppLocker bypass techniques, I highly recommend checking out The Ultimate AppLocker Bypass List created and maintained by Oddvar Moe (@Oddvarmoe). Also, these resources were very helpful while drafting this post: AppLocker Bypass-Assembly Load – https://pentestlab.blog/tag/assembly-load/ C# to Windows Meterpreter in 10 min – https://holdmybeersecurity.com/2016/09/11/c-to-windows-meterpreter-in-10mins/ Conclusion Well folks, that covers interesting code execution and AppLocker bypass vectors to incorporate into your red team/pen test engagements. Please feel free to contact me or leave a message if you have any other questions/comments. Thank you for reading! Sursa: https://bohops.com/2018/01/07/executing-commands-and-bypassing-applocker-with-powershell-diagnostic-scripts/ 1 Quote