Jump to content
Eusebiu1

Calculeaza Integrala

Recommended Posts

Posted

Take the integral:

integral csc(x+1) csc(x+2) dx

Write csc(x+1) csc(x+2) as 2/(cos(1)-cos(2 x+3)):

= integral 2/(cos(1)-cos(2 x+3)) dx

Factor out constants:

= 2 integral 1/(cos(1)-cos(2 x+3)) dx

For the integrand 1/(cos(1)-cos(2 x+3)), substitute u = 2 x+3 and du = 2 dx:

= integral 1/(cos(1)-cos(u)) du

For the integrand 1/(cos(1)-cos(u)), substitute s = tan(u/2) and ds = 1/2 sec^2(u/2) du. Then transform the integrand using the substitutions sin(u) = (2 s)/(s^2+1), cos(u) = (1-s^2)/(s^2+1) and du = (2 ds)/(s^2+1):

= integral 2/((s^2+1) (cos(1)-(1-s^2)/(s^2+1))) ds

Simplify the integrand 2/((s^2+1) (cos(1)-(1-s^2)/(s^2+1))) to get 2/(s^2+s^2 cos(1)-1+cos(1)):

= integral 2/(s^2+s^2 cos(1)-1+cos(1)) ds

Factor out constants:

= 2 integral 1/(s^2+s^2 cos(1)-1+cos(1)) ds

Factor cos(1)-1 from the denominator:

= 2 integral 1/((cos(1)-1) ((s^2 (1+cos(1)))/(cos(1)-1)+1)) ds

Factor out constants:

= 2/(cos(1)-1) integral 1/((s^2 (1+cos(1)))/(cos(1)-1)+1) ds

For the integrand 1/((s^2 (1+cos(1)))/(cos(1)-1)+1), substitute p = s cot(1/2) and dp = cot(1/2) ds:

= (2 tan(1/2))/(cos(1)-1) integral 1/(1-p^2) dp

The integral of 1/(1-p^2) is tanh^(-1)(p):

= (2 tan(1/2) tanh^(-1)(p))/(cos(1)-1)+constant

Substitute back for p = s cot(1/2):

= csc(1/2) sec(1/2) (-tanh^(-1)(s cot(1/2)))+constant

Substitute back for s = tan(u/2):

= csc(1/2) sec(1/2) (-tanh^(-1)(cot(1/2) tan(u/2)))+constant

Substitute back for u = 2 x+3:

= csc(1/2) sec(1/2) (-tanh^(-1)(cot(1/2) tan(x+3/2)))+constant

Which is equivalent for restricted x values to:

Answer: |

| = csc(1) (log(sin(x+1))-log(sin(x+2)))+constant

  • Downvote 1
Posted (edited)

Numitorul este produs, deci provine dintr-o adunare de 2 fractii => ne gandim la [ln(ceva)]' * (ceva)' (cazul fericit :) )

Calculand cos(x+1)/sin(x+1) - cos(x+2)/sin(x+2) face, prin aducere la numitor comun, sin1/sin(x+1)sin(x+2). Revenid la integrala initiala, aceasta devine 1/sin1*integrala[cos(x+1)/sin(x+1) - cos(x+2)/sin(x+2)]dx = 1/sin1 * {ln[sin(x+1)] - ln[sin(x+2)]}+ C.

Sper ca nu am greseli, am facut-o in graba.

Edited by Fame

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.



×
×
  • Create New...