Eusebiu1 Posted December 25, 2013 Report Posted December 25, 2013 O integrala simpla.Sa vedem cine reuseste primul! Quote
Whai_Nooa Posted December 25, 2013 Report Posted December 25, 2013 Integral Calculator: Wolfram Mathematica Online Integrator Quote
youjnhuhn2 Posted December 25, 2013 Report Posted December 25, 2013 csc(1) log(sin(1+x))-csc(1) log(sin(2+x))+C Quote
Eusebiu1 Posted December 25, 2013 Author Report Posted December 25, 2013 Si care e rationamentul ? Quote
Whai_Nooa Posted December 25, 2013 Report Posted December 25, 2013 Si care e rationamentul ?Iti faci tema la mate? Quote
Eusebiu1 Posted December 25, 2013 Author Report Posted December 25, 2013 Nu:)).Am rezolvat-o.Vreau sa vedem daca reuseste careva Quote
Whai_Nooa Posted December 25, 2013 Report Posted December 25, 2013 Nu:)).Am rezolvat-o.Vreau sa vedem daca reuseste careva Ti-o rezolvam eu daca le invatam la liceu..but fuck.. Quote
youjnhuhn2 Posted December 25, 2013 Report Posted December 25, 2013 Take the integral: integral csc(x+1) csc(x+2) dxWrite csc(x+1) csc(x+2) as 2/(cos(1)-cos(2 x+3)): = integral 2/(cos(1)-cos(2 x+3)) dxFactor out constants: = 2 integral 1/(cos(1)-cos(2 x+3)) dxFor the integrand 1/(cos(1)-cos(2 x+3)), substitute u = 2 x+3 and du = 2 dx: = integral 1/(cos(1)-cos(u)) duFor the integrand 1/(cos(1)-cos(u)), substitute s = tan(u/2) and ds = 1/2 sec^2(u/2) du. Then transform the integrand using the substitutions sin(u) = (2 s)/(s^2+1), cos(u) = (1-s^2)/(s^2+1) and du = (2 ds)/(s^2+1): = integral 2/((s^2+1) (cos(1)-(1-s^2)/(s^2+1))) dsSimplify the integrand 2/((s^2+1) (cos(1)-(1-s^2)/(s^2+1))) to get 2/(s^2+s^2 cos(1)-1+cos(1)): = integral 2/(s^2+s^2 cos(1)-1+cos(1)) dsFactor out constants: = 2 integral 1/(s^2+s^2 cos(1)-1+cos(1)) dsFactor cos(1)-1 from the denominator: = 2 integral 1/((cos(1)-1) ((s^2 (1+cos(1)))/(cos(1)-1)+1)) dsFactor out constants: = 2/(cos(1)-1) integral 1/((s^2 (1+cos(1)))/(cos(1)-1)+1) dsFor the integrand 1/((s^2 (1+cos(1)))/(cos(1)-1)+1), substitute p = s cot(1/2) and dp = cot(1/2) ds: = (2 tan(1/2))/(cos(1)-1) integral 1/(1-p^2) dpThe integral of 1/(1-p^2) is tanh^(-1)(p): = (2 tan(1/2) tanh^(-1)(p))/(cos(1)-1)+constantSubstitute back for p = s cot(1/2): = csc(1/2) sec(1/2) (-tanh^(-1)(s cot(1/2)))+constantSubstitute back for s = tan(u/2): = csc(1/2) sec(1/2) (-tanh^(-1)(cot(1/2) tan(u/2)))+constantSubstitute back for u = 2 x+3: = csc(1/2) sec(1/2) (-tanh^(-1)(cot(1/2) tan(x+3/2)))+constantWhich is equivalent for restricted x values to:Answer: | | = csc(1) (log(sin(x+1))-log(sin(x+2)))+constant 1 Quote
Eusebiu1 Posted December 25, 2013 Author Report Posted December 25, 2013 Nu mai folositi Wolfram ca nu se pune. Quote
bodostyle Posted December 26, 2013 Report Posted December 26, 2013 csc(1) log(sin(1+x))-csc(1) log(sin(2+x))+CScuze de offtopic, dar ce-i cu saracia aia de semnatura ? Quote
Fame Posted December 26, 2013 Report Posted December 26, 2013 (edited) Numitorul este produs, deci provine dintr-o adunare de 2 fractii => ne gandim la [ln(ceva)]' * (ceva)' (cazul fericit )Calculand cos(x+1)/sin(x+1) - cos(x+2)/sin(x+2) face, prin aducere la numitor comun, sin1/sin(x+1)sin(x+2). Revenid la integrala initiala, aceasta devine 1/sin1*integrala[cos(x+1)/sin(x+1) - cos(x+2)/sin(x+2)]dx = 1/sin1 * {ln[sin(x+1)] - ln[sin(x+2)]}+ C.Sper ca nu am greseli, am facut-o in graba. Edited December 26, 2013 by Fame Quote